1.3.0
STATINF
Installation
Indices and tables
Modules available
Release and FAQ
statinf
»
Index
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
I
|
K
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
|
V
|
W
|
Z
A
accuracy() (statinf.ml.performance.BinaryPerformance method)
AdaGrad (class in statinf.ml.optimizers)
Adam (class in statinf.ml.optimizers)
AdaMax (class in statinf.ml.optimizers)
add() (statinf.ml.neuralnetwork.MLP method)
adf_test() (in module statinf.stats.timeseries)
adjusted_r_squared() (statinf.regressions.glm.GLM method)
(statinf.regressions.LinearModels.OLS method)
B
binary_accuracy() (in module statinf.ml.losses)
binary_cross_entropy() (in module statinf.ml.losses)
BinaryPerformance (class in statinf.ml.performance)
C
closest_centroid() (statinf.stats.unsupervised.KMeans method)
CMPoisson (class in statinf.distributions.discrete)
coint_test() (in module statinf.stats.timeseries)
confusion() (statinf.ml.performance.BinaryPerformance method)
cov() (in module statinf.stats.descriptive)
create_dataset() (in module statinf.data.ProcessData)
D
Discrete (class in statinf.distributions.discrete)
dispersion_test() (in module statinf.stats.tests)
E
elu() (in module statinf.ml.activations)
F
F1_score() (statinf.ml.performance.BinaryPerformance method)
fit() (statinf.distributions.discrete.CMPoisson method)
(statinf.distributions.discrete.NegativeBinomial method)
(statinf.distributions.discrete.Poisson method)
(statinf.ml.neuralnetwork.MLP method)
(statinf.regressions.glm.GLM method)
(statinf.regressions.LinearModels.LinearBayes method)
(statinf.stats.bayesian.GGM method)
(statinf.stats.unsupervised.GaussianMixture method)
(statinf.stats.unsupervised.KMeans method)
fitted_values() (statinf.regressions.LinearModels.OLS method)
G
gaussian() (in module statinf.nonparametrics.kernels)
GaussianMixture (class in statinf.stats.unsupervised)
generate_dataset() (in module statinf.data.GenerateData)
get_betas() (statinf.regressions.LinearModels.OLS method)
get_distance() (statinf.stats.unsupervised.KMeans method)
get_weights() (statinf.ml.neuralnetwork.MLP method)
GGM (class in statinf.stats.bayesian)
GLM (class in statinf.regressions.glm)
I
init_params() (in module statinf.ml.initializations)
K
KMeans (class in statinf.stats.unsupervised)
kstest() (in module statinf.stats.tests)
L
Layer (class in statinf.ml.neuralnetwork)
LinearBayes (class in statinf.regressions.LinearModels)
log_stability() (in module statinf.ml.losses)
logit() (in module statinf.ml.activations)
logp() (statinf.distributions.discrete.Discrete method)
M
mape() (in module statinf.ml.performance)
mean_squared_error() (in module statinf.ml.losses)
(in module statinf.ml.performance)
MinMax() (statinf.data.ProcessData.Scaler method)
MLP (class in statinf.ml.neuralnetwork)
module
statinf.data.GenerateData
statinf.data.ProcessData
statinf.distributions.discrete
statinf.ml.activations
statinf.ml.initializations
statinf.ml.losses
statinf.ml.neuralnetwork
statinf.ml.optimizers
statinf.ml.performance
statinf.nonparametrics.kernels
statinf.regressions.glm
statinf.regressions.LinearModels
statinf.stats.bayesian
statinf.stats.descriptive
statinf.stats.tests
statinf.stats.timeseries
statinf.stats.unsupervised
move_centroids() (statinf.stats.unsupervised.KMeans method)
multivariate_time_series() (in module statinf.data.ProcessData)
N
NegativeBinomial (class in statinf.distributions.discrete)
nll() (statinf.distributions.discrete.Discrete static method)
nloglike() (statinf.distributions.discrete.CMPoisson static method)
(statinf.distributions.discrete.NegativeBinomial static method)
(statinf.distributions.discrete.Poisson static method)
Normalize() (statinf.data.ProcessData.Scaler method)
O
OLS (class in statinf.regressions.LinearModels)
OneHotEncoding() (in module statinf.data.ProcessData)
Optimizer (class in statinf.ml.optimizers)
P
parse_formula() (in module statinf.data.ProcessData)
partial_effects() (statinf.regressions.glm.GLM method)
pearson() (in module statinf.stats.descriptive)
plot_decision_boundary() (statinf.stats.bayesian.GGM method)
plot_posterior_line() (statinf.regressions.LinearModels.LinearBayes method)
plot_weight_distributions() (statinf.regressions.LinearModels.LinearBayes method)
pmf() (statinf.distributions.discrete.CMPoisson method)
(statinf.distributions.discrete.Discrete method)
(statinf.distributions.discrete.NegativeBinomial method)
(statinf.distributions.discrete.Poisson method)
Poisson (class in statinf.distributions.discrete)
precision() (statinf.ml.performance.BinaryPerformance method)
predict() (statinf.ml.neuralnetwork.MLP method)
(statinf.regressions.glm.GLM method)
(statinf.regressions.LinearModels.OLS method)
(statinf.stats.bayesian.GGM method)
predict_proba() (statinf.stats.bayesian.GGM method)
R
r_squared() (statinf.regressions.glm.GLM method)
(statinf.regressions.LinearModels.OLS method)
rankdata() (in module statinf.data.ProcessData)
recall() (statinf.ml.performance.BinaryPerformance method)
relu() (in module statinf.ml.activations)
RMSprop (class in statinf.ml.optimizers)
rss() (statinf.regressions.LinearModels.OLS method)
S
sample() (statinf.distributions.discrete.Discrete method)
Scaler (class in statinf.data.ProcessData)
SGD (class in statinf.ml.optimizers)
sigmoid() (in module statinf.ml.activations)
silhouette_score() (statinf.stats.unsupervised.KMeans method)
softmax() (in module statinf.ml.activations)
softplus() (in module statinf.ml.activations)
spearman() (in module statinf.stats.descriptive)
split_sequences() (in module statinf.data.ProcessData)
statinf.data.GenerateData
module
statinf.data.ProcessData
module
statinf.distributions.discrete
module
statinf.ml.activations
module
statinf.ml.initializations
module
statinf.ml.losses
module
statinf.ml.neuralnetwork
module
statinf.ml.optimizers
module
statinf.ml.performance
module
statinf.nonparametrics.kernels
module
statinf.regressions.glm
module
statinf.regressions.LinearModels
module
statinf.stats.bayesian
module
statinf.stats.descriptive
module
statinf.stats.tests
module
statinf.stats.timeseries
module
statinf.stats.unsupervised
module
summary() (statinf.regressions.glm.GLM method)
(statinf.regressions.LinearModels.OLS method)
T
tanh() (in module statinf.ml.activations)
tss() (statinf.regressions.LinearModels.OLS method)
ttest() (in module statinf.stats.tests)
ttest_2samp() (in module statinf.stats.tests)
U
unscaleMinMax() (statinf.data.ProcessData.Scaler method)
unscaleNormalize() (statinf.data.ProcessData.Scaler method)
update() (statinf.ml.optimizers.AdaGrad method)
(statinf.ml.optimizers.Adam method)
(statinf.ml.optimizers.AdaMax method)
(statinf.ml.optimizers.RMSprop method)
(statinf.ml.optimizers.SGD method)
updates() (statinf.ml.optimizers.Optimizer method)
V
var() (in module statinf.stats.descriptive)
variance() (statinf.regressions.glm.GLM method)
W
wilcoxon() (in module statinf.stats.tests)
Z
Z() (statinf.distributions.discrete.CMPoisson static method)